
A SONIFICATION INTERFACE UNIFYING
REAL-TIME AND OFFLINE PROCESSING

Hanns Holger Rutz Robert Höldrich

University of Music and Performing Arts Graz
Institute of Electronic Music and Acoustics (IEM)
hanns.rutz | robert.hoeldrich @kug.ac.at

ABSTRACT

SysSon is a sonification platform originally developed in
collaboration with climatologists. It contains a domain-
specific language for the design of sonification templates,
providing abstractions for matrix input data and accessing
it in real-time sound synthesis. A shortcoming of the previ-
ous version had been the limited breadth of transformations
applicable to this matrix data in real-time. We observed
that the development of sonification objects often requires
pre-processing stages outside the real-time domain, lim-
iting the possibilities of fully integrating models directly
into the platform. We designed a new layer for the soni-
fication editor that provides another, semantically similar
domain-specific language for offline rendering. Offline
and real-time processing are unified through common in-
terfaces and through a mechanism by which the latter can
make use of the outputs of the former stage. Auxiliary data
calculated in the offline stage is captured by a persisting
caching mechanism, avoiding waiting time when running a
sonification repeatedly.

1. INTRODUCTION

The SysSon sonification platform came out of an eponym-
ous research project running 2012–2015 whose aim was
the systematisation of sonification practices [1]. It was
designed to specifically handle the type of data produced
in climate research, namely multi-dimensional time series,
and to be able to translate this data into real-time sound
synthesis processes. Another aim was to enable scientists—
climatologists in our case—to directly engage with the son-
ification by running SysSon as an application that allows
them to import data files and to select, parametrise and
listen to sonification models. Development was resumed in
2016 as a case study in knowledge transfer from the artistic
into a scientific domain. Working with the same group
of climatologists, but using an adapted methodology, we
aim at making the platform more practical in typical usage
scenarios.

As the design process of sonification requires quick iter-
ations of programming, adjustment and listening, SysSon

Copyright: c© 2017 Hanns Holger Rutz et al. This is an open-access article dis-

tributed under the terms of the Creative Commons Attribution 3.0 Unported License,

which permits unrestricted use, distribution, and reproduction in any medium,

provided the original author and source are credited.

was conceived also as an integrated development envir-
onment (IDE) for the sonification design itself, and not
just an interface for the deployment of finalised sonifica-
tion models to scientists as “end users”. Consequently, the
platform integrates the two perspectives of programming
and editing sonification models, on one hand, and the us-
age and adjustment of sonification models, on the other
hand. The former is done through an integrated text editor
and compiler—using embedded domain specific language
(DSL) extensions for the Scala programming language—
the latter through a graphical user interface (GUI).

Until recently, sound computations were restricted to
mainly real-time synthesis, based on abstractions provided
by a computer music framework [2] that utilises SuperCol-
lider in the back-end. For example, there are objects that
encapsulate functions that define a SuperCollider graph of
signal processing blocks or unit generators (UGens). These
objects can be copied and moved around in the applica-
tion and posses a dictionary of parameters, such as scalar
values, references to buses, sound files, etc. In the IDE,
the UGen graph function is written inside a text editor, us-
ing Scala, while the associative dictionaries are generally
editable through GUI elements and drag-and-drop.

We have found that the restriction to real-time synthesis
can be limiting in many cases, and thus we set out to under-
stand how dedicated pre-processing stages could be added
to our system. What we are interested in is to learn how
our specific embodied knowledge of the software platform
can be analysed through its development process, and how
it can be translated to yield a more practical application.
The rest of the article is organised as follows: First we
analyse how the advantages and limitations of the previous
version of the platform led to particular ways of developing
sound models. This is elaborated through the specific scen-
ario of sonifying the quasi-biennial oscillation (QBO). We
then show how we extended the system by a non-real-time
component that in many ways mirrors the real-time API,
making it easier to unify the two time domains.

2. DEVELOPMENT PROCESS

It is clear that any decision on design and representations
enables particular ways of working with and thinking about
the subject matter, as much as they inhibit others. For ex-
ample, being able to create and program the sound objects
from within the application allows them to be conceived as
things that can be evolved, duplicated, moved and copied

Proceedings of the 14th Sound and Music Computing Conference, July 5-8, Espoo, Finland

SMC2017-50

mailto:hanns.rutz@kug.ac.at
http://creativecommons.org/licenses/by/3.0/

REAL-TIME
MODEL EDITOR

definitions

SysSon PLATFORM SysSon IDE

General IDE (IntelliJ IDEA)

Embedded
Compiler

Application
Source Code

Sonification
Prototyping

Application
Development

WORKSPACE (MODEL) Real-time ProgramsData Sources Parameters …

Real-time
Program Sources

Real-Time
Program Sources

SONIFICATION
EDITOR (GUI)

WORKSPACE (VIEW)

Object API Real-time UGen Graph DSL…DEFINITIONS

Scientist (User)

Sonification
Designer

Sonification
Designer

(Researcher)

ch
an

g
e

e
n
vi

ro
n
m

e
n

t

Figure 1. User and developer perspectives and dynamics.
This is before the introduction of offline pre-processing.

around between workspaces. The sound objects live in
workspaces, and in fact the platform can be used to pro-
gram entire music compositions or sound installations.

On the other hand, our IDE is very rudimentary compared
to a professional IDE, when it comes to code navigation,
code completion, error checking, break-point debugging
and so forth. Also, a monolithic real-time UGen graph
function as the embodiment of a sonification process is a
strong constraint. Both the delegation of tasks to the graph-
ical interface and the restriction to a single graph function
had been perceived as restrictions by some participants of
a workshop on SysSon we held in 2014. In our own prac-
tice of developing sonification models, we found that we
could experiment better with some ideas by falling back
to a professional IDE (IntelliJ IDEA) that was used to de-
velop the application itself, temporarily removing some
constraints. This was possible due to the existence of an
overall application programming interface (API) extending
beyond what is exposed in the GUI. This type of develop-
ment process, where the sonification designer moves back
from the in-application coding to an outside IDE, the same
IDE that is used to write the entire application, is illustrated
in Figure 1.

2.1 Case Study: Quasi-Biennial Oscillation

To understand this process better, and how it can connect
with the in-application work, we present as a case study
the creation of a particular sonification model. The scen-
ario in climatology that we were targeting was the quasi-
biennial oscillation (QBO) [3]. This phenomenon occurs
in the lower stratosphere and equatorial latitudes, and in-
cludes temperature anomalies that rhythmically alternate
approximately every two years. A temperature anomaly
is a deviation of the temperature from its average value at
a given time and location. In the QBO, these anomalies
oscillate with the temporal phases shifting from higher to
lower altitudes, something that can be clearly seen in a plot
(Figure 2).

Because of its technical simplicity, many sonification
models are built on what has been called parameter map-
ping [4], techniques of more or less directly translating

20
03

-0
1-

16
 1

2:
00

:0
0Z

20
03

-0
3-

16
 1

2:
00

:0
0Z

20
03

-0
5-

16
 1

2:
00

:0
0Z

20
03

-0
7-

16
 1

2:
00

:0
0Z

20
03

-0
9-

16
 0

0:
00

:0
0Z

20
03

-1
1-

16
 0

0:
00

:0
0Z

20
04

-0
1-

16
 1

2:
00

:0
0Z

20
04

-0
3-

16
 1

2:
00

:0
0Z

20
04

-0
5-

16
 1

2:
00

:0
0Z

20
04

-0
7-

16
 1

2:
00

:0
0Z

20
04

-0
9-

16
 0

0:
00

:0
0Z

20
04

-1
1-

16
 0

0:
00

:0
0Z

20
05

-0
1-

16
 1

2:
00

:0
0Z

20
05

-0
3-

16
 1

2:
00

:0
0Z

20
05

-0
5-

16
 1

2:
00

:0
0Z

20
05

-0
7-

16
 1

2:
00

:0
0Z

20
05

-0
9-

16
 0

0:
00

:0
0Z

20
05

-1
1-

16
 0

0:
00

:0
0Z

20
06

-0
1-

16
 1

2:
00

:0
0Z

20
06

-0
3-

16
 1

2:
00

:0
0Z

20
06

-0
5-

16
 1

2:
00

:0
0Z

20
06

-0
7-

16
 1

2:
00

:0
0Z

20
06

-0
9-

16
 0

0:
00

:0
0Z

20
06

-1
1-

16
 0

0:
00

:0
0Z

20
07

-0
1-

16
 1

2:
00

:0
0Z

20
07

-0
3-

16
 1

2:
00

:0
0Z

20
07

-0
5-

16
 1

2:
00

:0
0Z

20
07

-0
7-

16
 1

2:
00

:0
0Z

20
07

-0
9-

16
 0

0:
00

:0
0Z

20
07

-1
1-

16
 0

0:
00

:0
0Z

20
08

-0
1-

16
 1

2:
00

:0
0Z

20
08

-0
3-

16
 1

2:
00

:0
0Z

20
08

-0
5-

16
 1

2:
00

:0
0Z

20
08

-0
7-

16
 1

2:
00

:0
0Z

20
08

-0
9-

16
 0

0:
00

:0
0Z

20
08

-1
1-

16
 0

0:
00

:0
0Z

20
09

-0
1-

16
 1

2:
00

:0
0Z

20
09

-0
3-

16
 1

2:
00

:0
0Z

20
09

-0
5-

16
 1

2:
00

:0
0Z

20
09

-0
7-

16
 1

2:
00

:0
0Z

20
09

-0
9-

16
 0

0:
00

:0
0Z

20
09

-1
1-

16
 0

0:
00

:0
0Z

20
10

-0
1-

16
 1

2:
00

:0
0Z

20
10

-0
3-

16
 1

2:
00

:0
0Z

20
10

-0
5-

16
 1

2:
00

:0
0Z

20
10

-0
7-

16
 1

2:
00

:0
0Z

20
10

-0
9-

16
 0

0:
00

:0
0Z

20
10

-1
1-

16
 0

0:
00

:0
0Z

20
11

-0
1-

16
 1

2:
00

:0
0Z

20
11

-0
3-

16
 1

2:
00

:0
0Z

20
11

-0
5-

16
 1

2:
00

:0
0Z

20
11

-0
7-

16
 1

2:
00

:0
0Z

20
11

-0
9-

16
 0

0:
00

:0
0Z

20
11

-1
1-

16
 0

0:
00

:0
0Z

20
12

-0
1-

16
 1

2:
00

:0
0Z

20
12

-0
3-

16
 1

2:
00

:0
0Z

20
12

-0
5-

16
 1

2:
00

:0
0Z

20
12

-0
7-

16
 1

2:
00

:0
0Z

20
12

-0
9-

16
 0

0:
00

:0
0Z

20
12

-1
1-

16
 0

0:
00

:0
0Z

20
13

-0
1-

16
 1

2:
00

:0
0Z

20
13

-0
3-

16
 1

2:
00

:0
0Z

20
13

-0
5-

16
 1

2:
00

:0
0Z

20
13

-0
7-

16
 1

2:
00

:0
0Z

20
13

-0
9-

16
 0

0:
00

:0
0Z

20
13

-1
1-

16
 0

0:
00

:0
0Z

20
14

-0
1-

16
 1

2:
00

:0
0Z

Time

10000.0

11500.0

13000.0

14500.0

16000.0

17500.0

19000.0

20500.0

22000.0

23500.0

25000.0

26500.0

28000.0

29500.0

31000.0

32500.0

34000.0

35500.0

37000.0

38500.0

40000.0

41500.0

43000.0

44500.0

46000.0

47500.0

49000.0

A
lti

tu
de

 [m
]

Figure 2. Temperature anomalies (−5◦C blue, +5◦C red),
equatorial in 10km to 50km altitude, Jan 2003 to Jan 2014.

(mapping) a stream of input data to a stream of data that
controls one or several sound parameters. Parameter map-
ping is also suggested in the design of SysSon, as the prom-
inent abstraction added to the set of UGens is Var, a refer-
ence to matrices and sub-matrices that may then be unrolled
as a temporal and/or multi-channel real-time signal that can
be treated like any other UGen. While we can create hun-
dreds or even thousands of oscillators or modulators this
way without technical problems, obtaining a suitable sonic
representation of a multi-dimensional matrix is all but easy.
We have tried to address this in the GUI by allowing the
user to quickly create sub-selections from matrices and to
assign different dimensions to different logical inputs of
the sound model.

Nevertheless, it became more and more clear that what
was missing from the framework was some general notion
of what Grond and Berger call the data preparation stage.
The data sets in our scenario are stored in NetCDF format,
and of course it is possible to prepare these sets with vari-
ous other tools, with numerical computing software, and
so forth. The climatologists are used to these tools and
perform typical operations such as reducing the resolution
of a data set, averaging over a dimension, or calculating
the anomalies by subtracting out the monthly averages of a
variable. However, we would like to build sonification tem-
plates that imply a certain pre-processing without requiring
the user to carry it out by hand. This is especially true if
we want to explore more unconventional data preparation.

One of the ideas we developed for creating a sonification
of the QBO phenomenon is to use an algorithm from the
visual domain, a blob detection. Blob detection is an ap-
proach from computer vision to determine coherent shapes
in a static or moving digital image. The motivation came
from the clarity with which we identify the regular diag-
onal shapes in Figure 2. If we transformed the time-altitude
grid of temperature data into a low number of expressive
features, we could potentially build a sonification that par-
alleled the visual clarity in the aural domain.

2.2 Obtaining and Representing Blob Data

To prototype this idea, we looked for a simple open source
library that could be used from within the Java Virtual
Machine (JVM), since our application runs on the JVM. We

Proceedings of the 14th Sound and Music Computing Conference, July 5-8, Espoo, Finland

SMC2017-51

Figure 3. Output of blob detection for positive temperat-
ure anomalies (detection threshold +0.26◦C), equatorial
in 21km to 36km altitude, Jan 2003 to Jan 2014.

found a library written by Julien Gachadoat 1 that produced
reasonable results while being implemented in only a few
hundred lines of Java code. Within two days, we were able
to take a data set of temperature anomalies, convert each
latitude/longitude slice into a greyscale image with the time
series on the horizontal axis (180 months) and altitudes on
the vertical axis (600 levels), run the blob detection, and
output a new matrix file containing the evolution of the blob
shapes for a given maximum number of concurrent voices.
Figure 3 shows the input matrix with blob contours. The
polyline inside the blobs is one of the features extracted,
the centroid or weighted arithmetic mean, which gives a
good representation of the “glissandi” of the anomalies.

How can we make the results of the blob analysis avail-
able to the sonification? The solution we picked is to render
each blob with one sound generator within a polyphonic
UGen graph. The blob data is again rasterised along the
time axis, and blobs are pre-sorted into voices. Since there
is no support for dynamic growth of voices within a UGen
graph, we define a maximum number of concurrent voices
at the analysis stage. Theoretically, two voices would suf-
fice to capture the overlapping diagonal shapes, but since
the shapes are not fully regular and there occur disturb-
ances to the pattern—visible in the figure by the very short
yellow blob, for example—we use four voices in the pre-
pared data, and twice as many voices in the UGen graph,
so that we may employ envelope release phases that extend
beyond the strict boundary of one time slice.

If the rasterised and organised blob-data is written out as
another matrix file, we thus have a preparation stage that
consists of a transformation (input matrices→ structured
blob-set→ equidistant-sampled blob-data→ voice distri-
bution → output matrices). The written NetCDF matrix
file can then be used inside the SysSon application like
any other sonification data source. A sample section from
such a file is shown in Figure 4. The time dimension is
preserved and the altitude dimension is replaced by a new
dimension that contains the blob “records”, each of which
occupies ten rows. Without going into the details, each
blob record starts with a unique identifier (rows 0, 10, and
20 in the figure) that the sound synthesis will use to trace

1 http://www.v3ga.net/processing/BlobDetection/
index-page-home.html (accessed 18-May-2017)

Figure 4. Section from a rasterised blob matrix

a coherent object. The identifier is zero whenever the par-
ticular voice is not allocated. In the shown table, the top
most voice begins at the first time index with blob id 7, a
second voice with blob id 1 is allocated in the forth column.
Next in the record are the blob dimensions (first altitude
level, start time index, number of altitude levels, number
of time slices), followed by the features of each time slice,
including mean, standard deviation and centroid of the tem-
perature anomalies included (visible in the table by their
floating point nature).

3. INTEGRATED OFFLINE UGEN GRAPHS

The problem with the creation of the blob matrix is, of
course, that it is not yet in any way integrated into the
application. While this is acceptable for research, we do
not want the climatologists to send us their data sets in order
to run them through the transformation and send them back
to be used in the sonification. A simple solution would
be to add an action to the workspace GUI to allow the
users to pre-process their matrices and then re-import the
resulting blob matrix into the workspace. In fact, we have
taken this route before with an action to pre-calculate an
anomalies matrix from a regular (e.g. temperature) matrix.
But this way, the underlying problem is not addressed: If
one can think up and implement a real-time sonification
model from scratch with the built-in code editor, why is
there no counterpart for the pre-processing stage?

The idea that we have now implemented and that we are
now testing is this: Can we conceive a domain-specific
language for offline processing that is relatively easy to
understand if one has already learnt how to write the
real-time code? Is the UGen graph model applicable for
the pre-processing stage? What are its advantages, disad-
vantages, impedance matches and mismatches?

The UGen graph concept is well established in sound syn-
thesis and could be seen as a form of dataflow or stream
processing model. A network of unit processors is run on
a scheduler, each consuming and producing a stream of
values. For example, in SuperCollider, the UGens form
a directed acyclic graph and process floating point values
either as chunks at audio sampling-rate, or as individual
values at control rate, a fraction of the audio sampling-rate
that makes computations less expensive. In the beginning
of 2016, we were working precisely on the translation of
the UGen graph model to offline processing in the refor-
mulation of the FScape audio signal processing software.
A few months later, the implementation was stable enough
to use it to render not just sounds, but also bitmap images

Proceedings of the 14th Sound and Music Computing Conference, July 5-8, Espoo, Finland

SMC2017-52

http://www.v3ga.net/processing/BlobDetection/index-page-home.html
http://www.v3ga.net/processing/BlobDetection/index-page-home.html

// real-time
val gen = LFSaw.ar(SampleRate.ir/800, 0.5)
val up = (gen + 1) * 2
val a = up.min(1)
val b = (up - 3).max(0)
a - b

// offline
val gen = LFSaw(1.0/800, 0.75)
val up = (gen + 1) * 2
val a = up.min(1)
val b = (up - 3).max(0)
a - b

Figure 5. Comparison of real-time and offline graphs, using
the Scala DSLs in SysSon.

and video sequences, suggesting that this framework could
be also used as the basis for offline processing of matrices
in SysSon. It is thus useful to summarise the experience
with this framework so far:

3.1 Applying the UGen Model to Offline Processing

At first glance, offline and real-time processing should be
quite similar, only distinguished by the kind of scheduler
that runs the nodes of the graph, in the former case being
busy incessantly, and in the latter case paying attention to
deadlines. Figure 5 shows the example of an envelope gen-
erator in real-time (SuperCollider) and in offline (FScape)
code. The envelope goes from one to zero in 200 frames,
then back to one in 200 frames, and remains there for an-
other 400 frames. Three subtle difference can be seen
already:

• The phase argument to the sawtooth generator dif-
fers. While in SuperCollider the ranges of some
parameters have historically been chosen to minim-
ise mathematical operations on the server side, in
FScape we favour consistency across various UGens
over additional arithmetical operations required.

• In SuperCollider we must specify whether the UGen
uses audio or control rate, while in FScape these
categories do not exist. Instead, the block sizes of
signals depend on the particular UGen and may even
vary across the inputs and outputs of a UGen, al-
though a nominal block size can be specified that
determines the default buffer size for dynamic sig-
nals.

• The frequency is given in Hertz in SuperCollider. In
FScape it is given as a normalised value, as there is
no notion of a global sampling rate. We were con-
templating the introduction of a SampleRate UGen
for convenience, but since the system was primarily
designed to transform audio files, one would mostly
want to work directly with the respective sampling
rates of the input files. In the cases where images or
videos are processed, the notion of audio sampling
rate would also be meaningless. In fact, many UGens

Property SuperCollider FScape

Language C, C++ Scala
Scheduler custom written Akka Streams
Threading single threaded optional asynchronous,

thread pool
Data rates dual

(audio and control)
multi-rate

Buffering assigned fixed size
“wire-buffers”

variable size,
reference passing

Data type float unrestricted
Life cycle all UGens start and

stop together
UGens can shut down
at different times

Table 1. Comparison of back-end architecture

are now specified to take period parameters in number-
of-frames rather than their reciprocal, a normalised
frequency, as we also support integer numbers next
to floating point numbers, avoiding time-base drift
over long runs, something that is known to cause
issues in SuperCollider.

Both systems use a weak type GE (graph element) for the
values that can be used as parameters to UGens (constants
are graph elements, as are UGens themselves), but while
on the SuperCollider server all streams are restricted to
32-bit floating point resolution, in FScape we adopted
multiple numeric types, consisting currently of 32-bit and
64-bit integer numbers and 64-bit floating point numbers.
Some UGens are generic in that they can natively work
with different numeric types, preserving particular preci-
sion and semantics, while others coerce a GE into a partic-
ular type. For example, ArithmSeq(0.0, 4)—similar to
Dseries in SuperCollider—produces the arithmetic series
0.0, 4.0, 8.0, . . . with floating point numbers, while
ArithmSeq(0L, 4) produces the series 0L, 4L, 8L, . . . with
64-bit integer numbers. This approach is still under evalu-
ation.

The way UGens are constructed from the user-facing side
is very similar, including lazy expansion of elements that
allows the preservation of pseudo-UGens (e.g. in serial-
isation) and the late binding of resources needed from the
environment (e.g. automatic adaptation of the expanded
UGen graph to variable types and dimensions of control
inputs), multi-channel expansion, and the composition with
unary and binary operators. But when it comes to the im-
plementation of the UGens, the systems use very different
architecture, which is summarised in Table 1.

3.2 Interfacing with an Offline Graph

It remains to define an input/output interface for integrating
offline processing graphs with other objects inside SysSon.
All objects share as a common interface a dictionary—
called attribute map—that can be used to freely associate
attributes with it, using conventional string keys. In the real-
time case, for example, when one creates a named control
"freq".kr, the control input is looked up in the attribute
map of a containing Proc object (the object wrapping the
UGen graph) at key "freq". This could be a scalar value,
a break-point function, or any other object that could be

Proceedings of the 14th Sound and Music Computing Conference, July 5-8, Espoo, Finland

SMC2017-53

val m = Matrix("var")
val v0 = m.valueSeq
val v = Gate(v0, !v0.isNaN)
val mn = RunningMin(v).last
val mx = RunningMax(v).last
MkDouble("min", mn)
MkDouble("max", mx)

Figure 6. An offline program that determines the range of
values of a matrix.

translated into a control signal. The real-time signal output
of a Proc is represented by a ScanOut UGen, for which a
dedicated output object must be created inside a special
outputs dictionary of the Proc. This object can then be
placed in the attribute map of another object that wants
to use the corresponding signal as input. These links thus
function as “patch cords” between objects.

In the offline case, we use a similar approach. Here
"freq".attr would again inject a value or value stream
from the containing object’s attribute map. Other UGens
exists for other types of input: To get access to a matrix,
one uses Matrix("key") where the matrix is then sought
in the attribute map or in the list of variables of the contain-
ing Sonification object using "key". Likewise, different
UGens exists for the different types of outputs produced.
Figure 6 gives the example of calculating the minimum
and maximum elements of an input matrix. The valueSeq

method on the matrix produces a one-dimensional “flat”
(interleaved) stream of all the elements in the matrix. The
Gate is used to remove missing values (NaN is for not-a-
number), which commonly occur in the climatology data
files. The RunningMin and RunningMax UGens are sim-
ilar to their SuperCollider equivalents, but the last op-
eration is unique: In the offline processes, UGens may
terminate at different times, once their inputs or outputs
are exhausted. The valueSeq stream terminates when all
elements have been transported, and subsequently Gate

and RunningMin/Max will terminate. The last operation
produces a UGen that outputs only the last element from
its input stream. There are also operations such as drop

and take that act like their counterparts in standard Scala
collections.

The last two lines define the outputs of the program. The
string parameter defines the key in the output dictionary of
the object containing the offline program. Corresponding
output objects must be created in that dictionary and may
then be linked to the attribute map of a Proc, where they
are then used in the definition of the real-time process.
Figure 7 shows a screenshot to clarify how offline and real-
time programs are wired together and integrated within a
sonification object. The editor of the offline program is in
the top-left, containing the code of Figure 6, along with the
two output objects named min and max. These two objects
have been linked through drag-and-drop with the attribute
map, shown in the bottom-right, of the real-time object,
whose code in turn is shown in the editor window in the
top-right.

Figure 7. Interlinkage of offline and real-time programs
within the application’s user interface

The large window in the background shows the sonific-
ation editor GUI as it is presented to the user, e.g. the
climatologist. The interface elements have been program-
matically generated by the real-time program (this is still
considered the main entry to the sonification model, while
the offline programs function as auxiliary components):
Var refers to an input variable like Matrix, but addition-
ally defines a corresponding user interface element in the
sonification editor. Dim UGens allow the user to associ-
ate dimensions of the sonification model with dimensions
of the matrices sonified. The UserValue UGen, used for
speed and amplitude here, is a control like "key".kr, but
also requests the presentation of a user interface element.
In a future version, we envision a set of dedicated user
interface objects that can be linked to standard controls,
disentangling the real-time program from decisions on the
user interface.

3.3 Data Preparation Stage

We now return to the blob example. In order to reformulate
the data preparation, we need to create new UGens that
encapsulate the blob detection and analysis. Generally, the
best approach is to minimise the functionality of a UGen,
perhaps splitting an algorithm across a number of UGens,
so that partial functions can be reused in other contexts.
An obvious choice would be one UGen Blobs2D for the
blob detection stage, yielding the contours of the blobs
within each matrix slice, and a second UGen BlobVoices

that transforms this set of geometric objects into the raster-
ised matrix of voices containing the required analysis of
the blob contents, such as the sliding extent and centroid.
The program complete with input UGen Matrix and output
UGen MkMatrix is shown in Figure 8.

Without going into much detail, we want to highlight
three aspects of this reformulated algorithm:

Program storage: We store a program as a tree of (un-
expanded) UGens and not the source code or the compiled

Proceedings of the 14th Sound and Music Computing Conference, July 5-8, Espoo, Finland

SMC2017-54

val voices = 4 // maximum polyphony
val taLo = 0.0 // lowest temp anomaly considered
val taHi = 3.5 // highest temp anomaly considered
val thresh = 0.26 // blob detection threshold

val mIn = Matrix("anom")
val d1 = Dim(mIn, "time")
val d2 = Dim(mIn, "altitude")
val width = d2.size
val height = d1.size
val blobSz = voices * 10 // blob record has 10 elems

// transform the matrix spec (shape)
val specIn = mIn.spec
val s1 = specIn.moveLast(d1)
val s2 = s1 .drop (d2)
val d3 = Dim.Def("blobs", values =

ArithmSeq(length = blobSz))
val specOut = s2 .append (d3)

val win0 = mIn.valueWindow(d1, d2)
val win1 = Gate(win0, !win0.isNaN)
val win = win1.max(taLo).min(taHi) / taHi

val blobs = Blobs2D(in = win, width = width,
height = height, thresh = thresh, pad = 1)

val winB = BufferDisk(win)
val mOut = BlobVoices(in = winB, width = width,

height = height, numBlobs = blobs.numBlobs,
bounds = blobs.bounds, numVertices =
blobs.numVertices, vertices = blobs.vertices,
minWidth = 10, minHeight = 4, voices = voices)

MkMatrix("out", specOut, mOut)

Figure 8. UGen-based formulation of the blob matrix pre-
paration

bytecode. This has two reasons: First, Scala is a static-
ally typed and compiled language, and while we embed an
on-the-fly compiler for read-eval-print-loop (REPL) func-
tionality, the compilation is slow and resource hungry. In
the real-time case, compiling on-the-fly is prohibitive, and
regular language control structures such as if-then-else
blocks cannot be represented on the sound synthesis server,
so there is little benefit to store Scala programs. For the off-
line case, storing regular (compiled) Scala programs is still
an interesting option, and something that is done already
elsewhere in the application for Action objects. The prob-
lem here is compatibility—on the one hand, Scala has ad-
opted a policy of allowing binary incompatibility between
major release versions in order to facilitate language evolu-
tion. SysSon has recently been migrated from Scala 2.11 to
2.12, so if we had stored binary code programs, we would
face the problem of automatically detecting incompatible
versions when opening an old workspace and recompiling
them. An interesting new possibility will arrive in the fu-
ture when Scala has migrated to a new serialisation format
called TASTY [5] that promises to address this. But even
then, a danger remains that closures may unintentionally
capture variables in the system (cf. [6]). The second reason
is that we would have to give much stronger guarantees

about the stability of the entire API that is exposed if we
stored the binary program. Storing the UGen graph has
been proven a good solution, because it still very express-
ive as it basically corresponds to the abstract syntax tree
(AST) of the DSL, and we can change implementation de-
tails without rendering the programs incompatible.

The isolation of the DSL has brought another tremendous
advantage, as we can compare two programs for structural
equality. This is crucial to correctly cache the results of
the offline program. Because analyses like the blob detec-
tion can take some time, being able to cache the results
allows the user to quickly adjust sonification parameters
without being penalised by long waiting times, as long as
the parameters do not affect the structural equality of the
program (e.g. a different part of the input matrix must be
analysed).

Manipulating structural data: Partly related, a recur-
ring problem or question is the transport of structural data
that is not well captured by the streaming of plain numeric
values. This is clearly showing here in the adaptation of
the matrix specification from input to output: We need
to be able to remove the altitude dimension and replace
it by a new “record” type of dimension for the blobs here,
the transformation from specIn to specOut. The DSL must
foresee all possible scenarios since, because of the program
storage constraints, it is not possible to use the expressive
Scala language feature of applying a higher-order function,
e.g. writing specIn.filterNot(_.name == d2.name). But
even if this was possible, we have a mismatch with the
streaming protocol. In Blobs2D, we have regular vectorial
data of fixed window sizes flowing into its input, but for
each window we have a varying (much smaller) number of
hierarchical output records that would ideally be objects in
the form of

class Blob(bounds: Rectangle, slices: List[Slice])
class Slice(extent: Int, mean: Double, std: Double)

Remarkably, there are only few discussions on representing
record-type data in streaming systems. There was work on
this for FAUST [7], but even there records are supposed to
bundle together flat objects of equal rate components, and
nested structures are not addressed. Systems either force all
data into vectorial representations—for instance, OpenCV
puts polygon output from analysis into a standard matrix,
just as we output the blob contours as a stream of pairs of
x/y coordinates demarcated by an independent outlet for
numVertices—or they divide the world into vector data
and message or event data, as in Pure Data and Max/MSP,
where records can be represented as message lists, although
the problem of nested data structures is addressed just as
little.

Multi-rate alignment: The line val winB = Buffer-

Disk(win) indicates a problem. The streaming infrastruc-
ture we have chosen, Akka Streams, uses back-pressure,
a combination of dynamic push (data-driven) and pull
(demand-driven) approaches with bounded queues between

Proceedings of the 14th Sound and Music Computing Conference, July 5-8, Espoo, Finland

SMC2017-55

nodes. This is generally helpful when real-time properties
are not required, because the system tends to adjust itself
to the particular data-rates produced in the nodes, while
automatically blocking unlimited growth of unprocessed
messages (resulting in running out of memory), where a
consumer node cannot catch up with the pace of a producer
node. Nonetheless, whenever the program contains a dia-
mond topology—a sink and source are connected by more
than one path—this can result in a stalling process, and ap-
propriate intermediate buffers must be inserted. Akka cur-
rently has no means to automatically detect these situations,
and so it is the programmer’s responsibility to manually in-
sert buffers. BufferDisk is the most simple form of such a
buffer, as it is unbounded and written to disk if it becomes
too large. Alternatively, we could have just duplicated the
valueWindow call, although we would then also duplicate a
few more nodes and thus require more computation.

In a traditional signal processing scenario, it is easy enough
to calculate the necessary buffers, and a future version of
FScape can probably accomplish this automatically, but
with non-vectorial structural data such as the output of the
blob detection, we fear that manual control will still be
required. Again, some research on multi-rate management
exists, e.g. [8], but this is focused on real-time scenarios
(with properties such as de-coupling that do not apply here)
and vectorial data. Another related aspect is the complexity
of implementing multi-rate UGens with many inputs and
outputs. As Arumí Albó has noted, handling multi-rate sig-
nals inside modules “yields complex code in every concrete
module” [9, p. 145].

4. DISCUSSION AND CONCLUSION

We have presented a new architecture within the SysSon
sonification platform to integrate real-time sound synthesis
with offline pre-processing stages, using a similarly con-
structed DSL for writing UGen graphs. The work is the
result of quick iterations that responded to feedback from
climatologists who we are trying to give a tool at hand that
they can use all the way from data import to model selec-
tion and parametrisation. The architecture was elaborated
through the case study of using a blob detection algorithm
to sonify the QBO phenomenon. After presenting a set of
rendered sounds to the climatologists, 2 it became quite
clear that allowing them to navigate interactively through
the data and adjust different sound parameters would be
a requisite for advancing the sound models, so having an
integrated data pre-processing stage was an important step
towards this goal.

Another important result of this research is a better un-
derstanding of the development and transfer processes that
take place at the various stages of experimenting with new
sonification approaches and feeding them back into a stable
platform. It emerges a pattern of oscillation in this process
between the greenfield experimentation in the external IDE,
and reformulation within the inner IDE for deployment.
This movement is illustrated in Figure 9.

2 See the revised sets labelled WegC_170508-... at https://
soundcloud.com/syssonproject/sets/ (accessed 18-May-2017)

QBO scenario
Direct mapping models

Software v1.10

Idea: reduce to individual features
Can we do without offline?

Peaks via ArrayMax UGen

Try tracing multiple local max
Build state machine using
LocalIn/Out UGens

First complete sonification
Refine sound timbres

Limitations of real-time means
Idea: look at overall gestalt
Metaballs blob algorithms

Spec requirements for
offline and integration

Look at FScape - feasible?

Pseudo-algorithm:
Slices > Blobs > Rasterise
> Voices > Output matrix

Blobs2D, BlobVoices UGens
Migrate previous sonifications

Software v1.13

API for lazily calculated objects
Implementation in FScape, SysSon

Structural program key cache

Implement as separately running
program in general IDE

Verification of data output

Using new blob data, build
set of sonifications with

different parameters, timbres

Sketch out re-integration
Pseudo-code for possible DSL
Analogies to RT (cache, link)

Oct 2016

Nov 2016

Dec 2016

Jan 2017

Feb 2017

in
sid

e
 S

y
sS

o
n
 ID

E
in

sid
e
 g

e
n
e
ra

l ID
E

S
y
sS

o
n

ID

E
S
y
sS

o
n

ID

E
g
e
n
e
ra

l
ID

E

cli
mato

logist
s

cli
mato

logist
s

cli
mato

logist
s

ba
ck

-tr
an

sl
at

io
n

pro
blem

s

ad
d

monito
rin

g

lib
rar

y

addtable view

evaluate
works from 2014

(dismiss)

Figure 9. Stages in the development of the blob sonification

A number of concrete suggestions can be made with re-
spect to the future development of this architecture:

• It would be extremely interesting to have an interact-
ive worksheet or REPL mode for offline programs.
That is to say, the ability to execute these programs
step by step, validate the intermediate outputs, re-
adjust, etc., akin to the “notebook” mode of opera-
tion that has gained much traction with iPython and
Jupyter [10].

• Offline programs could become a formalisation within
the application code base itself for various situations:

– Real-time UGens could be added that implicitly
spawn pre-processing stages, freeing the au-
thors of sound models to create separate offline
objects for trivial tasks. For example, query-
ing the minimum and maximum value of mat-
rix would be better suited as operators directly
available within the real-time program.

– The user (scientist) facing side of the editor
could have a richer palette of matrix transform-
ation operators. For example, ad-hoc averaging
across a dimension or down-sampling would
be a very useful operation offered to the user,
and of which a particular sonification model

Proceedings of the 14th Sound and Music Computing Conference, July 5-8, Espoo, Finland

SMC2017-56

https://soundcloud.com/syssonproject/sets/
https://soundcloud.com/syssonproject/sets/

would not need to have any knowledge or pre-
sumption. Such additional matrix reduction or
transformation operations could transparently
spawn corresponding offline programs before
feeding the sonification.

– The program already provides a set of dedic-
ated transformation utilities, e.g. for the calcu-
lation of anomalies. These could now be imple-
mented coherently through the offline DSL.

• The UGen implementation is quite involved, espe-
cially when structural and multi-rate data is needed.
We suggest to define another intermediate layer on
top of Akka Streams that provides more formal defin-
itions for finite state machines. The ad-hoc state
machine for BlobVoices is several hundred lines of
code, and thus way too complex. We need better
abstractions or macros for the implementing classes.
Had we fused Blobs2D and BlobVoices into the same
UGen, the process would have been obviously much
simpler—as we would have skipped the stream rep-
resentation of nested data structures—but this exper-
iment was exactly aimed at seeing if passing around
structural data was feasible within the existing stream-
ing framework. We can conclude that it is feasible
but demands better library support to make writing
these types of UGens less work and error-prone.

An overall picture emerges, where we need to reconsider
the perspective on sonification. The existing system makes
strong presumptions about the “object” nature of sonifi-
cation—we have a sonification, we apply a sonification, a
sonification is a sound process coupled with an associative
dictionary of data sources, etc. Paying more attention to
the details of the development process can help to under-
stand sonification rather as a process itself, which brings
into focus the translational competency of artistic research-
ers working in the field. Consequently, the challenge will
be how this process view can be married to the (rightful)
expectation of scientists to adopt these systems as stable
and clearly delineated tools.

Acknowledgments
The SysSon platform was originally developed within project
P 24159, funded by the Austrian Science Fund (FWF). Since
2016, the continued development at the Institute of Electronic
Music and Acoustics (IEM) of the University of Music and Per-
forming Arts Graz is funded by the Knowledge Transfer Centre
South (WTZ Süd) Austria. Climate data sets and evaluation feed-
back is kindly provided by the Wegener Center for Climate and
Global Change (WegC) at the University of Graz.

References
[1] K. Vogt, V. Goudarzi and R. Höldrich, ‘SysSon – a

systematic procedure to develop sonifications’, in
Proceedings of the 18th International Conference
on Auditory Display (ICAD), Atlanta, GA, 2012,
pp. 229–230.

[2] H. H. Rutz, K. Vogt and R. Höldrich, ‘The SysSon
platform: A computer music perspective of sonifica-
tion’, in Proceedings of the 21st International Con-
ference on Auditory Display (ICAD), Graz, 2015,
pp. 188–192. [Online]. Available: http : / / hdl .

handle.net/1853/54126.

[3] M. P. Baldwin, L. J. Gray, T. J. Dunkerton, K. Hamilton,
P. H. Haynes, W. J. Randel, J. R. Holton, M. J. Al-
exander, I. Hirota, T. Horinouchi, D. B. A. Jones,
J. S. Kinnersley, C. Marquardt, K. Sato and M. Taka-
hashi, ‘The quasi-biennial oscillation’, Reviews of
Geophysics, vol. 39, no. 2, pp. 179–229, 2001. DOI:
10.1029/1999RG000073.

[4] F. Grond and J. Berger, ‘Parameter mapping sonifica-
tion’, in The Sonification Handbook, T. Hermann, A.
Hunt and J. G. Neuhoff, Eds., Berlin: Logos Verlag,
2011, pp. 363–397.

[5] M. Odersky, E. Burmako and D. Petrashko, ‘A TASTY
Alternative’, EPFL, Lausanne, Tech. Rep. 226194,
2016. [Online]. Available: https://infoscience.
epfl.ch/record/226194.

[6] H. Miller, P. Haller and M. Odersky, ‘Spores: A type-
based foundation for closures in the age of concur-
rency and distribution’, in Proceedings of the 28th
European Conference on Object-Oriented Program-
ming (ECOOP), Uppsala, 2014, pp. 308–333. DOI:
10.1007/978-3-662-44202-9_13.

[7] P. Jouvelot and Y. Orlarey, ‘Dependent vector types
for data structuring in multirate faust’, Computer
Languages, Systems & Structures, vol. 37, no. 3,
pp. 113–131, 2011. DOI: 10.1016/j.cl.2011.03.
001.

[8] G. Essl, ‘Playing with time: Manipulation of time
and rate in a multi-rate signal processing pipeline’,
in Proceedings of the 38th International Computer
Music Conference, Ljubljana, 2012, pp. 76–83. [On-
line]. Available: http://hdl.handle.net/2027/
spo.bbp2372.2012.013.

[9] P. Arumí Albó, ‘Real-time multimedia computing
on off-the-shelf operating systems: From timeliness
dataflow models to pattern languages’, PhD thesis,
Universitat Pompeu Fabra, Barcelona, 2009.

[10] H. Shen, ‘Interactive notebooks: Sharing the code’,
Nature, vol. 515, no. 7525, p. 151, 2014. DOI: 10.
1038/515151a.

Proceedings of the 14th Sound and Music Computing Conference, July 5-8, Espoo, Finland

SMC2017-57

http://hdl.handle.net/1853/54126
http://hdl.handle.net/1853/54126
https://doi.org/10.1029/1999RG000073
https://infoscience.epfl.ch/record/226194
https://infoscience.epfl.ch/record/226194
https://doi.org/10.1007/978-3-662-44202-9_13
https://doi.org/10.1016/j.cl.2011.03.001
https://doi.org/10.1016/j.cl.2011.03.001
http://hdl.handle.net/2027/spo.bbp2372.2012.013
http://hdl.handle.net/2027/spo.bbp2372.2012.013
https://doi.org/10.1038/515151a
https://doi.org/10.1038/515151a

