
The 21th International Conference on Auditory Display (ICAD–2015) July 8Ð-10, 2015, Graz, Austria

THE SYSSON PLATFORM: A COMPUTER MUSIC PERSPECTIVE OF SONIFICATION

Hanns Holger Rutz Katharina Vogt Robert Höldrich

University of Music and Performing Arts Graz
Institute of Electronic Music and Acoustics (IEM)

Inffeldgasse 10, 8010 Graz, Austria
rutz | vogt | hoeldrich @iem.at

ABSTRACT

We introduce SysSon, a platform for the development and applica-
tion of sonification. SysSon aims to be an integrative system that
serves different types of users, from domain scientists to sonific-
ation researchers to composers and sound artists. It therefore has
an open nature capable of addressing different usage scenarios.
We have used SysSon both in workshops with climatologists and
sonification researchers and as the engine to run a real-time sound
installation based on climate data. The paper outlines the architec-
ture and design decisions made, showing how a sonification system
can be conceived as a collection of specialised abstractions that
sit atop a general computer music environment. We report on our
experience with SysSon so far and make suggestions about future
improvements.

1. INTRODUCTION

The SysSon platform has been developed for the past two years as
part of the eponymous research project [1] funded by the Austrian
Science Fund (FWF), P 24159. It is an open source software1 that
provides both an application programming interface (API) and a
standalone desktop application. Fig. 1 is a schematic view of its
components and the types of users and activities it supports.

The current design is the result of an incremental refactoring
that departed from the initial requirements of the research project,
namely to be able to open and preprocess data files to become
suitable for real-time sound synthesis based on ScalaCollider, a
client for the SuperCollider server [2].

Another objective was to enable climatologists to integrate
sonification with their typical workflows. Originally coupling to
existing plotting software such as Ncview and building a simple
domain specific language (DSL) for text-based interaction, the
platform gradually acquired the shape of a full-fledged desktop
application.

As the system became more complex, new requirements for
higher-level resource management, caching, and a persistent de-
scription of sonification models emerged, and we repositioned the
project on the foundation of Sound Processes, a computer music
framework [3]. The platform was fully “infected” by the data-
flow model of this framework, and the specific abstractions used

1https://github.com/iem-projects/sysson

This work is licensed under Creative Commons Attribution Ð
Non Commercial 4.0 International License. The full terms of the License
are available at http://creativecommons.org/licenses/by-nc/4.0

Graphical User Interface Interactive ShellFrontend:

- Opening and Navigating Data Files
- Organising Workspaces

Domain Scientist: - Plotting
- Exploring Sound Models
- Building Sonifications

- Numerical Computing
- Advanced Features

API Components:

Sonification Researcher: - Plotting
- Creating Sound Models

- Rapid Prototyping
- Debugging

NetCDF-Java ScalaCollider

SoundProcesses

LucreMatrix

JFreeChart Mellite

Composer: - Integrating with Musical Materials
- Building Offline and Realtime Compositions

Figure 1: SysSon architecture

for sonification were reimplemented within the object model of
Sound Processes.

This shift was reinforced by the planning of a sound installa-
tion, where sonifications would be interactively composed. Con-
sequently, as a last step, the GUI was integrated with the computer
music front-end Mellite. What we arrived at is a perspective in
which sonification becomes a particular methodology of computer
music. What we hope for is that, as composers get acquainted with
Mellite, they will discover and explore the possibility of sonified
data as a new material element in their work. Of course, many com-
posers and sound artists have utilised sonification processes (e.g.
[4], [5], [6]), but there exists no general platform for the systematic
experimentation with sonification that equally satisfies the needs
of researchers and artists and lets them directly share their ideas.

In the following, we give an overview of our system. It is still
a young project and not without obstacles, and we will conclude
by summarising the experience with its usage so far.

2. HOST ENVIRONMENT

Sound Processes is a frameork that is the result of research into
the observation of the compositional process. It provides data
structures that trace the evolution of computer based composition
over time, making these traces available for later inspection or for
incorporation into the process itself. But it can also be transparently
used as a foundation to build computer music systems.

The 21st International Conference on Auditory Display (ICAD 2015) July 8–10, 2015, Graz, Austria

ICAD 2015 - 188

The 21th International Conference on Auditory Display (ICAD–2015) July 8Ð-10, 2015, Graz, Austria

2.1. Common Objects

Sound Processes provides two core functionalities. First of all,
it defines a protocol for reactive (data-flow like) objects, and it
contains a number of useful objects, such as:

• atomic types: integer and floating point numbers, boolean
expressions, strings, . . .

• folders: they are containers for other objects and similar to a
sub-patcher in Max or Open Music.

• artifacts and artifact locations: artifacts are logical references
to external file resources. Artifacts are resolved through loc-
ations, and when a workspace is transported to a different
computer, locations can be adjusted to resynchronise with
external resources.

• audio-files: they are a specific type of artifact.
• proc (or sound process): a description of a sounding object.

It encapsulates a DSP graph in the ScalaCollider language,
which is a dialect of SuperCollider. It also contains ports
(called scans) to connect to other processes.

The object protocol is extensible, and SysSon uses it to add its
sonification abstractions.

The second functionality is sound synthesis. Model ob-
jects, such as an audio-file, a proc, an ensemble (group of ob-
jects) or a timeline may have corresponding aural representations.
Sound Processes integrates a transactional memory model with the
sound synthesis system and provides high level abstractions for
dealing with graph topology and resources such as audio-buses and
buffers.

2.2. Workspace

Mellite provides a graphical user interface for Sound Processes and
defines the workspace as the basic organisational unit. A work-
space in most cases is simply a root folder that can be thought of
as the main “patcher”. The creation and modification of objects
inside this patcher are automatically synchronised with an under-
lying database. We thus ensure that the user can come back to the
workspace at any later point and will find everything in its previ-
ous state, including for example the parametrisation of sonification
models or plot objects. To preserve state, one can either duplicate
objects or use an automatically versioned workspace that traces the
evolution of all parameters over time.

The GUI uses metaphors of a standard desktop application
such as point-and-click, drag-and-drop, and undo-redo. Fig. 2
shows an example workspace containing two locations, a folder
with data-sources, a folder with sonification models, an audio-file
and a plot. Except for locations and audio-file, these are objects
introduced by the SysSon platform.

3. SYSSON ABSTRACTIONS

We now describe the main abstractions provided by SysSon.

3.1. Data-Sources

Data sets for sonification can become very large, and domain sci-
ences have come up with file formats to store them. SysSon sup-
ports NetCDF (Network Common Data Form) [7], a format fre-
quently used in atmospheric research. NetCDF files can easily

Figure 2: Workspace view

grow to several hundreds of megabytes, and they are therefore
not copied but merely linked to workspaces as external references
through handles called data-sources.

When a data-source object is created, its skeleton structure
consisting of a number of variable descriptors (matrices) is stored
with the workspace, allowing to operate even when the underlying
NetCDF file is offline. A data-source is associated with an artifact
which can be updated when a workspace is moved to a different
computer.

Adding different types of data-sources in a future version
should be simple. For example, at the moment a CSV file would
have to be converted to a NetCDF or audio-file first, but there is no
reason one could not add direct support.

3.2. Matrix Structure

A matrix is a regular one- or multi-dimensional structure of floating
point cells. Dimensions are simply represented by other matrices.
For example, a matrix of precipitation data may have dimensions
lon (longitudes), lat (latitudes), time (time-series). Each of these
dimensions then is another one-dimensional matrix (or vector) that
stores the dimension’s values, such as the series of latitudes with
unit ‘degrees-north’.

Matrices are composed and transformed through a data-flow
graph. They usually originate from a data-source object. To be
editable in the user interface, a variable placeholder is used that
stores the current data-flow graph. Transformations then become
new nodes in this graph. The most common transformation is a
reduction of the matrix’s size using a reduce object. The reduce
object takes an input matrix, a dimension-selector and a reduction-
operator. For example, to produce a time slice of the aforemen-
tioned precipitation matrix, the dimension-selector would indicate
the time dimension and the reduction-operator is an index into the
time dimension. The output matrix thus has a rank of one less than
the input matrix. Each of the objects related to the reduction is
again made editable through data-flow variables holding the dimen-
sion’s name and the index integer position. This is illustrated in
Fig. 3, where the resulting matrix expression at the very bottom
could be a parameter of a sonification model.

Other operators take slices (ranges) of a dimension or perform
sub-sampling by skipping samples using a stride parameter. Fu-
ture versions shall include other commonly used operators such as
dimensional reduction through scanning and sub-sampling using

The 21st International Conference on Auditory Display (ICAD 2015) July 8–10, 2015, Graz, Austria

ICAD 2015 - 189

The 21th International Conference on Auditory Display (ICAD–2015) July 8Ð-10, 2015, Graz, Austria

Reduce

Index
op

Name
dim-sel

string
lon

int
44

Reduce

Slice
op

Name
dim-sel

string
lat

int
30

matrix

int
33

from to

in

Reduce

Stride
op

Name
dim-sel

string
time

int
6

in

pr

in

DataSource

Variables:

Artifact Location

… .nc

child

/home/…
path

Figure 3: Composed matrix graph. Dotted trays represent variable
(mutable) data-flow cells.

averaging or interpolation, as well as binary operations such as tak-
ing the element-wise differences between two matrices. Currently,
those operations can only be carried out eagerly, producing new
matrix files.

3.3. Plot Objects

Plot objects encompass a matrix, a mapping from dimensions to
axes, and visual parameters such as colour palette and scaling.
Fig. 4 shows an example plot of a time slice of precipitation data.

3.4. Sonification Objects

Sonification instances are encapsulated by a dedicated object type.
This object is composed of

• a proc (sound process) object that describes the sound produc-
tion in terms of a synthesis function.

• a dictionary of sources where a logical name in the sonification
model is associated with a tuple of a matrix and a dimensional
dictionary. The dimensional dictionary provides logical di-
mensions for the sound model that may want to use them for
unrolling the matrix in time or to drive specific sound aspects
such as timbre or spatialisation.

• a dictionary of controls which are user adjustable scalar para-
meters of the sound model. For example, a typical control
would be the speed at which a sonification traverses a time
series.

The user interface for a sonification object is shown in Fig. 5.
The section labeled ‘Mapping’ shows that the model uses a single

Figure 4: Plot view

source ‘data’ with which a matrix ‘pr‘ has been associated. This
matrix has been reduced, the underlying graph corresponding with
Fig. 3. The model also defines two logical dimensions ‘time‘ and
‘pan‘ which are associated with the matrix’s own ‘time‘ and ‘lat‘
dimensions. Using this dictionary-based decoupling, sonification
models can be flexibly tested with different data inputs.

The sonification researcher or sound designer can open an in-
tegrated code editor within the workspace to develop the sound
models. This is depicted in Fig. 6. Regular ScalaCollider ex-
pressions are augmented with user interface elements such as the
‘user-value’ object responsible for the ‘controls’ section of the
sonification editor, and data specific elements such as matrix and
dimension keys. Within the DSP graph, matrices and vectors may
appear as scalar values or dynamic time-changing signals. When a
sonification object is made audible, the system translates the matrix
expressions into a cache of audio files which can then be streamed
on the SuperCollider server. We exploit its multi-channel expan-
sion feature and provide pseudo-UGens to easily align the matrix
data with related data such as the axis dimensions.

4. EXPERIENCE

The platform has been used in multiple user tests, a workshop and
for the creation of a sound installation.

4.1. As a Research Tool

Preliminary results show that both climatologists and computer
music researchers had no problems navigating and configuring ex-
isting sonification models. During the workshop, it became clear
that mastering the programming of sound models requires a longer
learning process, as users need to gain an understanding of the
nature of the data at hand, the architecture of SysSon and its model
of data processing, as well as the sound synthesis language and the
way it connects to the data inputs. The current focus on a graphical
user interface without a direct equivalent in the interactive text
console was seen as disadvantageous by some participants. Fur-
thermore, experienced computer musicians felt the restriction of
having one compound sound synthesis process limiting compared

The 21st International Conference on Auditory Display (ICAD 2015) July 8–10, 2015, Graz, Austria

ICAD 2015 - 190

The 21th International Conference on Auditory Display (ICAD–2015) July 8Ð-10, 2015, Graz, Austria

Figure 5: Sonification editor

to a more flexible client-side timing model provided for instance
by SuperCollider’s pattern sequences.

4.2. Sound Installation

Using the platform in a real-time interactive sound installation was
another stress test and rewarding experience. The piece Turbulence.
A climate sound portrait was developed in collaboration with a
group of visual artists for exhibition at the Forum Stadtpark, Graz
in November 2014 [8]. The system is coupled to 42 speakers
and 12 acceleration sensors that influence the selection of sound
situations and the modulation of the exhibition space that is filled
with a topography of threads and paper (see Fig. 7).

Embedding the sonification objects in a temporal form that
changes according to compositional constraints and the signals of
the sensors was an interesting challenge that especially led to the
question of whether all structures should be composed inside Mel-
lite or outside of it, using a conventional development environment.
In favour of the former was the ability to directly evolve sound ob-
jects as the installation was running, in favour of the latter was the
more mature editor and the ability to describe the interconnection
of processes as text commands, something that is still cumbersome,
as proc atoms must be instrumented with code fragments of actions
that are triggered at points in time, revealing the limitations of
the graphical user interface to represent relationships between the
workspace objects.

In the end a hybrid approach was used to combine both advant-
ages, where the layers of the composition were prototyped directly
inside the environment but finally written back to regular class files.
The seamless transition and interweaving in the sound composition
from sonification based elements to purely musical macro form
supported the perspective of sonification as one possible rendering
among others in the repertoire of computer music.

Figure 6: Synth Graph code editor

5. OUTLOOK

The future development of Mellite will have to focus on improv-
ing the possible oscillations between writing code fragments and
connecting and arranging materials in the workspace, making this
hybrid form more compelling to work with.

The SysSon platform will benefit from an expansion of the
reactive matrix layer. Not only do we need more transformations—
especially resampling—but ideally all matrix operations will be
supported inside the definition of sound synthesis functions itself.
For example, the sound designer should be capable of specifying
a dimensional reduction of an input matrix or the calculation of
anomalies, freeing the domain scientist from tedious preparations
of the input data and yielding one unified API. Another iteration
of the development could also focus on a more user-friendly DSL
as a thin layer on top of the existing API to allow easier text-based
access to the entire platform.

While SysSon has been validated within climate research, an
interesting future task will be the application in other scientific
areas. Here it will be seen if it can establish itself as a compel-
ling alternative to other existing sonification solutions. From our
perspective, its advantage over plain numerical computing environ-
ments such as MATLAB or Octave is the use of a well established
sound synthesis system based on SuperCollider with a seamless
transition to computer music paradigms and its potential for real-

The 21st International Conference on Auditory Display (ICAD 2015) July 8–10, 2015, Graz, Austria

ICAD 2015 - 191

The 21th International Conference on Auditory Display (ICAD–2015) July 8Ð-10, 2015, Graz, Austria

Figure 7: View of the sound installation Turbulence

time control. More advanced numerical computing packages can
be easily linked to the system, and the Scala language is establish-
ing itself firmly in the “data science” community. The advantage
over customised Max/MSP or Pure Data patches is the dynamic
nature of the workspace, the sound models and the handling of
data-sources (e.g. channel abstraction), something that is cumber-
some if not impossible to achieve in static systems. Furthermore,
we believe the dual perspective of visual front-end with desktop
metaphors and the power of text-based API make our approach
superior to patchers.

6. REFERENCES

[1] K. Vogt, V. Goudarzi and R. Höldrich, ‘SysSon – a system-
atic procedure to develop sonifications’, in Proceedings of
the 18th International Conference on Auditory Display, At-
lanta, GA, 2012, pp. 229–230.

[2] H. H. Rutz, ‘Rethinking the SuperCollider client...’, in Pro-
ceedings of the SuperCollider Symposium, Berlin, 2010.

[3] ——, ‘A reactive, confluently persistent framework for the
design of computer music systems’, in Proceedings of the
9th Sound and Music Computing Conference (SMC), Copen-
hagen, 2012, pp. 121–129.

[4] A. Polli, ‘Atmospherics/Weather Works: a spatialized met-
eorological data sonification project’, Leonardo, vol. 38, no.
1, pp. 31–36, 2005.

[5] F. Dombois and G. Eckel, ‘Audification’, in The Sonification
Handbook, T. Hermann, A. D. Hunt and J. Neuhoff, Eds.,
Berlin: Logos Publishing House, 2011, pp. 301–324.

[6] N. Barrett and K. Mair, ‘Sonification for geoscience: listen-
ing to faults from the inside’, in EGU General Assembly
Conference Abstracts, vol. 16, 2014, p. 4489.

[7] H. L. Jenter and R. P. Signell, ‘NetCDF: a public-domain-
software solution to data-access problems for numerical
modelers’, in Proceedings of the 2nd International Confer-
ence on Estuarine and Coastal Modeling, American Society
of Civil Engineers (ASCE), vol. 72, 1992, pp. 72–82.

[8] H. H. Rutz, ‘Particularities and generalities. considerations
on the sound composition’, Forecast:Turbulence. Work-
shop:Exhibition, pp. 64–67, 2014.

The 21st International Conference on Auditory Display (ICAD 2015) July 8–10, 2015, Graz, Austria

ICAD 2015 - 192

