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ABSTRACT

We present ScalaCollider, a new client framework to
connect to the SuperCollider sound synthesis server.
It builds on top of the general purpose language Scala.
Scala’s ambition is to allow for the development of
scalable systems, being equally comfortable both for
small-scale scripting and large-scale modular projects.

Following an overview and comparison of the cur-
rently available clients for SuperCollider, we introduce
the most important features of Scala, and show how its
specific language elements can be exploited to design
an elegant client that supports UGen graph composi-
tion, handles proxy objects, and restores part of the
clarity lost in the entanglement of the original Super-
Collider client’s class library.

The problems of type-safety and approaches to con-
currency are discussed, and an outlook on a high-level
extension for declarative sound process specification is
given.

1. INTRODUCTION

1.1 Specialised or General Purpose?

The 2002 paper [1] in which James McCartney de-
scribes the architecture of SuperCollider 3 – the di-
vision into a sound synthesis server (scsynth) and a
language client which communicate through the Open
Sound Control protocol –, is framed by the question:
«Is a specialised computer music language even neces-
sary?» McCartney presents a list of concepts employed
in modern computer programming languages, many of
which are implemented in the SuperCollider language
(sclang), a language specially designed for computer
music. However, he concludes, the creation of such
a specialised language was mainly pragmatically mo-
tivated: No single general-purpose programming lan-
guage (GPL) exhausted the list of required criteria,
but theoretically a GPL could well satisfactorily drive
the SuperCollider server.

At the time of that writing, McCartney expressed
interest in four GPL as candidates for SuperCollider
client implementations: OCaml, Dylan, GOO, and
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Ruby. All four – like sclang – combine object-oriented
and functional programming, while three of them are
dynamically-typed, and only one is statically-typed
(OCaml).

1.2 The Client Landscape

Eight years later, nine clients based on GPL can be
identified 1 , including Ruby and Standard ML – like
OCaml a dialect of the ML language –, but also new
languages that have emerged since then, namely Pro-
cessing (a simplified Java dialect for graphics program-
ming) in 2001, Scala in 2003, and Clojure (a LISP-
dialect) in 2007. Figure 1 gives an overview over these
languages and the corresponding SuperCollider clients.

The variety of clients reflects their different roles
and scenarios, different strengths and weaknesses.
p5 sc and the Python client, for instance, do not pro-
vide a means to construct graphs of Unit Generators
(UGens), so they still require sclang as part of the Su-
perCollider interface. JCollider was not designed to
compete in conciseness and expressiveness with sclang,
nor as an environment for interactive computer music
programming, hence it does not offer a run-eval-print-
loop (REPL) mode. It refrains from elegant UGen
graph syntax, as it is targeting application program-
ming on the Java Virtual Machine where typically only
a limited set of Synth Definitions are required, as in
the case of the SwingOSC user interface server or the
Eisenkraut audio file editor.

The similar named rsc3, smlsc3 and hsc3 were all
developed by Rohan Drape. The Scheme client rsc3
evolved out of a separate sound synthesis engine that
Drape had written in C and which was controlled
from Scheme. SuperCollider was only used after it be-
came available on the Linux platform, and so rsc3 was
born. The switch from interpreted Scheme to com-
piled Haskell was motivated by the insufficient perfor-
mance of Scheme to deal with more complex works.
Within this move, the library was also significantly
simplified and thinned out [12]. Apart from direct
control of the SuperCollider server, hsc3 has several
extensions such as an audio file library and pattern
generators.

The Overtone project primarily targets a live-coding

1 We define clients such that they transcend a plain general
OSC library, by providing representations for the processes on
the server, such as UGen graphs, proxies for objects such as
Synth, Group, Bus, Buffer etc., or specialised methods to call
the server’s OSC interface.

http://creativecommons.org/licenses/by/3.0/


Language D
y
n

am
ic

al
ly

ty
p

ed

S
ta

ti
ca

ll
y

ty
p

ed

O
b

je
ct

-o
ri

en
te

d

F
u

n
ct

io
n
a
l

Client U
G

en
gr

ap
h
s

M
u

si
ca

l
S

ch
ed

u
li
n

g

In
te

ra
ct

iv
e

m
o
d
e

D
om

a
in

S
p

ec
ifi

c
G

U
I

R
ef

er
en

ce

Clojure + – – + Overtone + + + + [2]
Haskell – + – + hsc3 + – + – [3]
Java – + + – JCollider + – – – [4]
Processing – + + – p5 sc – – – * 2 [5]
Python + – + + (pkaudio) – + + – [6]
Ruby + – + + scruby + + + – [7]
Scala – + + + ScalaCollider + * 3 + – [8]
Scheme + – – + rsc3 + – + – [9]
Standard ML – + – + smlsc3 + – + – [10]
SuperCollider + – + + sclang + + + * 4 [11]

Figure 1. Comparison of SuperCollider clients. The attributes are just coarse descriptors, and many more could
be found (e.g. compiled versus interpreted, availability of step-debugger etc.)

audience. Jeff Rose, one of its main developers, is
working on Overtone as part of his PhD thesis, and
in the long term aims at a collaborative music system
based on peer-to-peer technology. Another layer will
sit on top of the direct SuperCollider server control to
provide high-level instrument creation and graphical
control using a patcher-metaphor. Although judged
as unlikely, a future version could also see a pure Java
synthesis engine backend instead of scsynth [13].

2. THE SCALA LANGUAGE

ScalaCollider which we will now discuss in detail, is
written in the Scala language [14]. Scala combines an
object-oriented with a functional approach. The ob-
ject system is based on multiple inheritance, where a
class can inherit at maximum from one direct super-
class, but may mix-in any number of so-called traits.
Traits are similar to abstract classes in that they can
contain methods that are (abstractly) declared, but
may also define method bodies. Other than classes
their constructor must be parameterless, and they are
typically used to add roles to a class, or to inject spe-
cialised behaviour by overriding an existing method.

Scala’s functional capabilities include functions as
first-class objects and higher-order functions, anony-
mous functions and call-by-name parameters (thunks
or closures), lazy evaluation, and pattern matching.
Scala comes with a large collection library whose ap-
plication programming interface (API) is predomi-
nantly functional and which comes in both mutable
and immutable variants.

2 Since Processing is a language for graphics programming,
there are essentially many libraries easily accessible that provide
such functionality.

3 Through the SoundProcesses extension package.
4 While the GUI library is generic, there are extensions and

Quarks which provide specific GUI components.

Scala has an extensive type system which is stati-
cally checked, and provides good type inference – al-
beit not as far-reaching as in OCaml or Haskell – in
order to eliminates superfluous type specification and
to achieve concise code. Through so-called implicit
conversions and structural-typing, a much more dy-
namic feeling can be provided than one would expect
from a statically-typed language. Implicit conversions
allow the compiler to automatically apply methods to
arguments in order to convert them to an expected
type, and will be explained later in more detail. In
the following example, structural-typing is used to de-
fine a method dispose which accepts an argument of
any type which has a method free with a unit-type
result. It can thus be called equally with an instance
of Node, Buffer, or Bus:

def dispose(f: {def free: Unit}) {

println("Disposing " + f)

f.free

}

val n = Synth.play("default")

dispose(n)

val b = Buffer.read(s, "sounds/a11wlk01.wav")

dispose(b)

Mechanisms like implicit conversions, along with
the allowance of symbols (e.g. mathematical opera-
tors) as identifiers, infix operator syntax, pattern mat-
ching, and built-in support for XML literals and parser
combinators, make Scala a good candidate for internal
domain specific languages (DSL) or language exten-
sions. Since Scala runs on the Java Virtual Machine,
a large set of libraries and frameworks from the Java
world are instantly accessible, and the compiler and
the Scala plug-ins for integrated development environ-
ments (IDE) such as Eclipse, NetBeans, and Intellij

http://rosejn.github.com/overtone
http://slavepianos.org/rd/sw/hsc3
http://www.sciss.de/jcollider
http://www.erase.net/projects/p5_sc
http://trac2.assembla.com/pkaudio/wiki/SuperCollider
http://github.com/maca/scruby
http://www.sciss.de/scalaCollider
http://slavepianos.org/rd/sw/rsc3
http://www.slavepianos.org/rd/sw/smlsc3
http://supercollider.sf.net


; Overtone

((synth (let [

o (mul-add (lf-saw:kr [8 7.23]) 3 80)

f (mul-add (lf-saw:kr 0.4) 24 o)

s (* (sin-osc (midicps f)) 0.04)

] (comb-n s 0.2 0.2 4))))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(let* ; rsc3

((o (mul-add (lf-saw kr (mce2 8 7.23) 0) 3 80))

(f (mul-add (lf-saw kr 0.4 0) 24 o))

(s (mul (sin-osc ar (midi-cps f) 0) 0.04)))

(audition (out 0 (comb-n s 0.2 0.2 4))))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

-- hsc3

let { o = lfSaw kr (mce2 8 7.23) 0 * 3 + 80

; f = lfSaw kr 0.4 0 * 24 + o

; s = sinOsc ar (midiCPS f) 0 * 0.04 }

in audition (out 0 (combN s 0.2 0.2 4))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(* smlsc3 *)

val m = mul_add (lf_saw kr (mce2 (c 8.0) (c 7.23))

(c 0.0)) (c 3.0) (c 80.0)

val f = mul_add (lf_saw kr (c 0.4) (c 0.0))

(c 24.0) m

val s = mul (sin_osc ar (midi_cps f) (c 0.0))

(c 0.04)

val _ = audition (out (c 0.0)

(comb_n s (c 0.2) (c 0.2) (c 4.0)))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

# scruby

SynthDef.new :analogbubbles do

o = LFSaw.kr([8, 7.23], 0, 24, 80)

f = LFSaw.kr(0.4, 0, 24, o)

s = SinOsc.ar(f.midicps) * 0.04

Out.ar(0, CombN.ar(s, 0.2, 0.2, 4))

end send

Synth.new :analogbubbles

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

// ScalaCollider

{ val o = LFSaw.kr(List(8, 7.23)).madd(3, 80)

val f = LFSaw.kr(0.4).madd(24, o)

val s = SinOsc.ar(f.midicps) * 0.04

CombN.ar(s, 0.2, 0.2, 4) }.play

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

// sclang

{ var o = LFSaw.kr([8, 7.23], 0, 3, 80);

var f = LFSaw.kr(0.4, 0, 24, o);

var s = SinOsc.ar(f.midicps) * 0.04;

CombN.ar(s, 0.2, 0.2, 4) }.play

Figure 2. The «Analog Bubbles» example in various
clients.

IDEA allow for mixed Scala / Java projects. Scala’s
syntax also deliberately follows Java’s in order to at-
tract programmers with Java background.

3. SYNTH GRAPHS

We call Synth Graph the ensemble of interlinked
UGens (the UGen Graph) along with their set of con-
stant input values and parameters which form the in-
terface to external control. The parameters are better
known by the term Controls. The vertices of the graph
are the UGens, and the edges connect the UGens. If
we assume they are directed from a UGen to its in-
puts, we typically find at the roots of the graph the
UGens which output sound to the speakers. Only
acyclic graphs are permitted, and special UGens are
required to achieve feedback.

By associating a Synth Graph with a name, Synth
Definitions are formed, and when a Synth is instanti-
ated, the server looks up the corresponding definition
through this name. The dissociation of the classes
SynthGraph and SynthDef has a practical reason: It al-
lows to compare the graphs for equality, which can be
used for analysis and caching purposes.

3.1 Creation

There are two possible approaches to Synth Graph
creation. Either the UGens are created outside any
specific context and the roots of the graph are ex-
plicitly registered, or the creation is performed as a
function evaluation within a special context. The first
approach is used for example in hsc3 and JCollider.
Although it has the advantage of being “purely func-
tional”, its disadvantage is that care must be taken to
include all relevant roots in the registration process.
For example, if a sound process in monitored by a
DetectSilence UGen, this UGen forms an additional
root. hsc3 provides a function mrg to gather the mul-
tiple roots, in JCollider we use class GraphElemArray

which is also handling the multi-channel-expansion.

In the second approach, the new instance of Synth-
Def (for sclang, scruby) or a transient SynthGraph-
Builder (in the case of ScalaCollider) is marked as the
current context during the application of the graph
generating function. The UGens instantiated in this
function automatically register with the current con-
text, and the resulting graph is build by optimising
and sorting the collected UGens.

3.2 Immutable and Marked UGens

ScalaCollider enhances this process in three ways:
Firstly, it does away with the extensive entanglement
between UGens and Synth Definition found in sclang.
It reduces the UGen – which in sclang contains seven
mutable fields – to an immutable object by using a
dedicated internal intermediate representation during
topological sorting. Secondly, all UGen classes are
so-called case-classes. Not only can UGens thereby



be used in pattern matching, opening interesting ap-
plications in graph analysis and transformation, but
they are also equipped with an equals method based
on the UGen’s value. The effect is that, as UGens
are collected into a Set, duplicate UGens (in terms
of value-equality) are automatically eliminated. Con-
sider this element from “harmonic tumbling”, one of
SuperCollider’s standard examples:

trig = XLine.kr([10,10], 0.1, 60)

The UGen is expanded to two channels, as it is sup-
posed to individuate two Dust generators. Since in
sclang two instances of XLine will never be equal –
equality is defined by reference and not by value –,
they will be both found in the resulting graph, al-
though one would be sufficient. Of course, a care-
ful user might spot this and use an expression such
as XLine.kr(10, 0.1, 60).dup(2) instead. While the
amount of CPU impact saved through elimination will
most likely be only a few percent, it could become
more important in the scenario of algorithmically craf-
ted Synth Graphs.

Wouldn’t this elimination also affect aforesaid Dust?
UGens with indeterminate behaviour or side-effects
pose a problem for viewing them as purely functional
values. For instance, hsc3 needs special handling of
a case such as WhiteNoise.ar - WhiteNoise.ar which
does not denote silence, but two independent white
noise processes being added up. Indeterminacy and
side-effects are also specially addressed in ScalaCol-
lider, but in a fully transparent way. Indeterminate
UGens are extended by an additional constructor ar-
gument, an identifier. Here is the example of Dust:

case class Dust(rate: Rate, density: UGenIn,
_indiv: Int) extends SingleOutUGen(density)

Along with this class comes the so-called companion
object, a singleton of the same name which is used
to provide factory methods. Typically the methods
represent the calculation rate of the UGen:

object Dust extends UGen1ArgsIndiv {

def ar : GE = ar()

def ar(density: GE = 1): GE = arExp(density)

def kr : GE = kr()

def kr(density: GE = 1): GE = krExp(density)

}

Object Dust mixes in trait UGen1ArgsIndiv that pro-
vides the methods arExp and krExp, taking care of
multi-channel-expansion and generating the individu-
ating identifier. We also see that a default value for
the density argument is provided. 5

The individuation does not render pattern match-
ing impossible, as we can use a wild card in any argu-
ment place. The following method transforms a collec-
tion of UGens by replacing any occurence of Dust.ar
with Dust2.ar running at double density:

5 The parameter-less methods are added so that one can write
Dust.ar instead of Dust.ar() which Scala prohibits by default as
it would cause ambiguity regarding currying.

def transf(ugens: GE*) = ugens map {

case Dust(‘audio‘, den, _) => Dust2.ar(den * 2)

case x => x

}

Some UGens with side-effects require individuation,
some not. For instance, two equal-valued Detect-
Silence UGens could be collapsed into one instance
without alteration of effect (as they would trigger the
same done-action at the same moment). On the other
hand, two Out UGens writing the same inputs to the
same bus must be individuated as the signals on the
bus sum up. 6

As a third enhancement, in order to provide a help-
ing indicator for graph analysis, as well as for op-
timisation, UGens with side-effects are additionally
marked with trait SideEffectUGen:

case class FreeSelf(in: UGenIn)

extends SingleOutUGen(in)

with ControlRated with SideEffectUGen

In the current implementation, sub-trees of the graph
whose root is not a side-effect UGen, will automati-
cally be discarded, freeing up more CPU usage. Again,
this scenario is most likely in machine-generated
graphs, but an extension could warn the user that she
has maybe overseen something, similar to the warn-
ings emitted by a language compiler or IDE presenta-
tion compiler.

4. TYPE CONSIDERATIONS

4.1 Strict Types

The polymorphism facilitated by sclang with its dy-
namic method dispatch poses a dilemma for a stati-
cally-typed language: Either one tries to preserve this
polymorphism as much as possible, likely giving up
static type check guarantees and ending up with very
unspecific types, or one sticks to the strict types and
limits expressiveness. Certainly the UGen graph cre-
ation, in particular considering the use in rapid proto-
typing or live coding, calls for a more relaxed handling.
ScalaCollider tries to balance the two sides, providing
convenient syntax for graph creation, but maintaining
as much type safety as possible. It does so mainly
through two mechanisms: Pattern matching and im-
plicit conversions.

Let us first consider which elements can be used
to construct a UGen graph. Figure 2 depicts one
of the standard examples of SuperCollider, the “Ana-
log Bubbles” produced by a sine oscillator, frequency-
modulated by a combination of a slower and a faster
sawtooth oscillator, and reverberated by a comb-filter.
The faster sawtooth is expanded to two channels which
oscillate at slightly different speeds, producing a wide
stereo image (the expanded graph is shown in fig-
ure 3). All implementations produce reasonably com-
pact text with smlsc3 requiring the most characters

6 One could argue of course that such an occurrence would
most likely be a mistake by the user.



due to to the way constants are formatted 7 . Syn-
tactically closest to the sclang version are Ruby and
Scala.

Control

Out
CombN CombN

* *

LFSaw

SinOsc

LFSaw

SinOsc

MulAdd

midicps

MulAdd

midicps

MulAdd MulAddLFSaw

Figure 3. The UGen Graph of “Analog Bub-
bles”. The symmetry is a direct result of the stereo-
expansion. Blue colour indicates control-rate, red
colour indicates audio-rate calculations. The figure
was produced by the ScalaCollider-Swing extension,
utilising the Prefuse data visualisation library [15].

“Analog Bubbles” contains three types of UGen in-
puts: A list or array, constant numbers, and other
UGens. Their strict types in ScalaCollider all inherit
from trait GE (graph element). They are UGenInSeq

and Constant, while UGens are represented by three
types: A SingleOutUGen – the most common type of
UGen – has exactly one output channel and can thus
be directly plugged into another UGen’s input. A
MultiOutUGen is decomposed into its output channels
which are represented by instances of UGenOutProxy.
Finally, Controls are treated specially as they are
mostly created indirectly in the form of ControlProxy-
Like objects which, like multi-channel UGens, are de-
composed into their output channels, using type
ControlOutProxy. Similar to sclang, the actual con-
trol UGens, separated by calculation rates and types
(regular, lagged, triggered), are internally created at
the end of the building stage.

4.2 Implicit types

The compact text of figure 2 is made possible not via
massive overloading but a set of implicit conversions:

implicit def intToGE(i: Int): Constant

implicit def floatToGE(f: Float): Constant

implicit def doubleToGE(d: Double): Constant

implicit def seqOfIntToGE(x: Seq[Int]): UGenInSeq

7 JCollider is actually much more verbose and has been omit-
ted from the figure due to its size.

implicit def seqOfFloatToGE(x: Seq[Float]): ...

implicit def seqOfDoubleToGE(x: Seq[Double]): ...

implicit def seqOfGEToGE(x: Seq[GE]): UGenInSeq

When the compiler sees a statement such as LFSaw

.kr(0.4) where the kr method expects an argument
of type GE, it looks into the implicit conversions in
the current scope. In this case it will find doubleToGE

which takes a Double and returns a Constant (which
extends GE and is thus allowed).

Scala distinguishes between floating point numbers
of 32-bit precision (Float) and 64-bit precision
(Double), and hence we have defined different conver-
sions. The case of LFSaw.kr(List(8, 7.23)) is par-
ticularly tricky and shows the limits of Scala’s type
system: Scala uses implicit numeric widening, so Int

8 becomes Double 8.0, and the argument is of type
List[Double]. Since List is an extension of the gen-
eral sequence type Seq, conversion seqOfDoubleToGE

applies which produces an instance of UGenInSeq (again
an extension of GE). If we were to make a list of
a constant number and another UGen, for example
List(8, DC.kr(7.23)), the code would not compile,
as there is no common supertype of Int and UGen, re-
sulting in type List[Any]. 8 We would be required to
specify that the list element type is GE so that the con-
versions would be working again as intended. 9 When
translating the standard examples that come with Su-
perCollider, however, there were no such corner cases.

4.3 Unary and Binary Operators

sclang employs a uniform approach regarding unary
and binary operators. The same operations can be
performed, no matter if the receiver is a number, a
UGen, a collection, or a function: -3.abs, SinOsc.kr

.abs, [-3.14, 20].abs, and {|i| i.log10}.abs are all
valid and behave uniform. As a disadvantage a novice
might occasionally get confused when the impedances
do not match in a particular case, such as an if state-
ment whose semantics shift when applied to UGens.

We have tentatively implemented part of this “ho-
momorphous” interface in ScalaCollider via three ad-
ditional implicit conversions:

implicit def intWrapper(i: Int): RichInt

implicit def floatWrapper(f: Float): RichFloat

implicit def doubleWrapper(d: Double): RichDouble

Operators such as cpsmidi are now applicable to
both numbers and graph elements. Types are pre-
served, so 440.cpsmidi yields a number and Pitch

.kr(x).cpsmidi a graph element (GE). Since the num-
ber classes are final in Scala and since it is also not
possible to add methods to existing classes, another
approach is necessary to make this possible. Martin
Odersky, the author of the Scala language, has coined
the approach «Pimp my Library» [16]: An implicit
conversion is defined that lifts the inaccessible type

8 Any is at the root of the Scala class hierarchy.
9 Alternatively, a method such as hsc3’s mce could be added.



(e.g. Float) to a wrapper class (e.g. RichFloat) which
provides the additional methods. For this to work
transparently, the methods of the enriched class al-
ways return the primitive type (Float), making the
intermediate representation disappear. For example:

class RichFloat(f: Float) {

def dbamp = (math.pow(10, f * 0.05)).toFloat

...

All in all, as with all forms of “magic”, great care
has to be taken in deciding on the implicit conver-
sions, as they also open up for unexpected or dif-
ficult to trace behaviour. With the above conver-
sions, List(330, 440).cpsmidi results in a UGenInSeq,
but List(330, 440).map(_.cpsmidi) in a List[Float].
Furthermore, we must establish a hierarchy of conver-
sions such that upon encountering 440.cpsmidi, the
compiler does not give up with an ambiguity error as
there are two possible implicit conversions in scope.
Clearly, we would like intWrapper to take precedence
over intToGE, and we can accomplish that by having
intToGE appear in a supertype of the object that de-
fines intWrapper.

There are a few more conversions available, for ex-
ample "gain".kr produces a control-rate control proxy
named "gain", and in the case of {...}.play the clo-
sure is converted into a Synth Graph and spawns a
Synth playing this graph. The relationship between
the different traits and conversions mentioned so far
is illustrated in figure 4.

4.4 Pattern Matching

Inevitably, different types get aliased within method
signatures, since overloading becomes impossible as
the permutations of allowed types grow exponentially.
One mechanism to retain fine grained control is pat-
tern matching. The following example is taken from
the MulAdd UGen, where method make1 is called after
multi-channel expansion to instantiate each UGen:

private def make1(rate: Rate, in: UGenIn, mul:

UGenIn, add: UGenIn) : GE =

(mul, add) match {

case (c(0), _) => add

case (c(1), c(0)) => in

case (c(1), _) => in + add

case (c(-1), c(0)) => -in

case (_, c(0)) => in * mul

case (c(-1), _) => add - in

case _ => this(rate, in, mul, add)

}

Identifier c here is short for Constant and the under-
score character represents the wildcard, so the pattern
matching is used to optimise performance by returning
UGens simpler than MulAdd if either of the arguments
is a specific constant number. Similar optimisations
occur in the unary and binary operator UGens.

The compiler will automatically detect matching
errors as would arise from cases which are unreachable,

and if pattern matching is applied to sealed types, it
will also emit warnings if the match is not exhaustive.

5. CONCURRENCY AND “STATE”

As the current trend goes towards multi-core proces-
sors, concurrency has become the buzz word in com-
puter programming languages. Thanks to the server-
client model of SuperCollider, it is already possible to
run several instances of the server, however there is no
communication between them such as shared buffers
or buses. The supernova project [17] tries to overcome
this by parallelising the server architecture directly.
Still, on the client side, sclang employs cooperative
multithreading. While this makes reasoning simple,
as all the routines behave deterministically, it also ne-
glects the presence of multiple processors, and forbids
certain tasks, such as rendering chunks of audio data
in the background on the client side.

5.1 Actor-based Concurrency

Advocates of functional programming usually blame
the presence of “state” for problems in concurrency.
State though is an inept term, as the problem is rather
mutability (the changes inbetween-states). This se-
mantic flaw reveals the fundamental assumption of a
functional program: being timeless. This of course is
contrary to our everyday experience which takes place
in time, and dynamicity is at the core of sound and
music. So there is a mismatch between “purely func-
tional” and sound process.

Mutability and immutability are not opponents, but
can be combined in a careful balance. The problem
is often one of stable identifiers that denote a dy-
namic object. For instance, on the server, a Synth
object is identified through its node-ID. If one wishes
to change a parameter of this node, we send a message
to the server, specifying the node-ID, the parameter
name (another identifier) and the new value, for ex-
ample ("/n_set", 1000, "freq", 880). To query a
parameter, we send a query message to the server, say
("/s_get", 1000, "freq"), and wait for a reply mes-
sage. This reflects exactly the Actor-model of con-
currency [18], where each side maintains its own lo-
cal knowledge of the system’s state, and knowledge
is exchanged by sending messages which are handled
through a mailbox queue.

Scala’s standard libraries include a dedicated ac-
tors package [19] which is used in the Server class of
ScalaCollider. We follow the naming conventions of
Scala-Actors: The ! method (aka “bang”) dispatches
an OSC message to the server and returns immedi-
ately. The double-bang method !! also returns imme-
diately, but with an instance of Future. Futures are
references to asynchronous return values. They de-
fine a method isSet which can be called to find out
whether the result has already been received or not.
To dereference the future, method apply is used.



Figure 4. Traits and classes involved in the creation of UGen graphs.

However, futures are more powerful: They are im-
plemented as actors themselves, and it is thus possible
to wait for the result from within an actor. For a single
asynchronous message, Server provides a convenient
method !? which sends out the message and registers
a PartialFunction (a pattern matcher) with the in-
ternal OSC receiving actor. Incoming reply messages
from the server are tested against this function, and in
the case of a match, the case-body is executed and the
handler is discarded. If no matching message arrives
within a given timeout period, the special message
TIMEOUT is sent. Here is an example:

val c = Bus.control(s)

val x = {Out.kr(c.index,

Pitch.kr(In.ar(NumOutputBuses.ir)))}.play

s !? (1000, c.getMsg, {

case OSCMessage("/c_set", c.index, freq) =>

println("Tracked frequency: " + freq)

})

Of course, this is usually hidden under convenience
methods such as ControlBus→get. It becomes more
interesting when needing to wait for several asynchro-
nous messages to be completed. This will be addressed
by the extension package SoundProcesses which is out-
lined in the next section.

5.2 Node Proxies and Sound Processes

The actors model is not the only possible way to deal
with concurrency, and in particular the operation of
reading a value, being an asynchronous query and re-
ply, can be a performance penalty. We have thus
refrained from using it more extensively at the core
of ScalaCollider. Instead, the concept is to provide
a base layer, on top of which more high-level sys-
tems can be constructed. The base layer reduces the
amount of variables found in their sclang counterparts
(we have already seen this with the UGen class). For
instance, the Node class in sclang contains five mu-
table fields (nodeID, server, group, isPlaying, and

isRunning) which are even publicly writable. Synth

adds another one (defName).

While this seems harmless from a small-scale project
or live-coding point of view, it is problematic in the
design of a base library for scalable systems. We are
currently developing a higher-level layer called Sound-
Processes which will be used to describe sound pro-
cesses.

This extension will provide automatic management
of resources such as buffers and buses, of interconnec-
tivity between processes such as graph order and con-
trol mapping, and of temporal behaviour such as logi-
cal time scheduling and atomic transactions. If several
processes are engaged in an action, they might need to
be synchronised through OSC bundles. Within such
a transaction, an intermediate representation of the
engaged nodes, buffers and buses must be maintained
– for example, which nodes as a result of the trans-
action will be moved, freed or paused, etc. –, and in
the case of one partner in the transaction aborting,
this intermediate representation must be discarded. If
a bundle is sent out or is successfully completed (by
replying for instance with a /synced message), the in-
termediate representation becomes the current state
of the system. Mutable fields in Node, Buffer and so
on are thus inadequate representations, and they have
been mostly dropped. 10

We are currently working with software-transactio-
nal-memory (STM) which provides mechanisms to cap-
ture related modifications to data structures inside
atomic transactions, with the possibility to roll them
back if an error occurs or two transactions produce
a concurrent conflict. There are two interesting li-
braries available: Akka [20] is a large framework that
not only provides a combination of its own actors and
STM (combining them into a construct called transac-

10 As a concession to convenient rapid proto-typing, a few are
left, such as the definition name of a Synth, or Buffer informa-
tion such as number of channels and frames, but they will only
be updated internally in a few defined cases.



tors), but also manages persistency to databases and
allows actors to run distributed across several comput-
ers. CCSTM [21] focuses on STM, but is more com-
pact, does not require bytecode weaving, and might
play nicely along with other libraries such as Scala
Actors. Our experiments with CCSTM have shown
that it is extremely useful for creating robust systems,
since unforeseen runtime errors cause safe rollbacks,
preventing the system from being left in an inconsis-
tent state (for instance regarding how sound processes
are interconnected).

6. CONCLUSION

We have introduced ScalaCollider, a new client for
the SuperCollider server. With ScalaCollider, sev-
eral functions which were fragmented in sclang, are
reunited in one language: The class library, the back-
bone primitives, the interpreter, the client side audio-
file library, and GUI frontends – while sclang restricts
the language in interpreter mode (it is not possible
to define further classes at runtime), requires to write
performance critical code as C primitives and com-
plex custom graphical user interface elements in Java
or Objective-C.

The next big effort lies in the design of the Sound-
Processes extension which has received a preliminary
outline, and which will provide a high-level layer for
defining sound processes. While the Java Virtual Ma-
chine is quite powerful and the systems built on top of
it have received “free” upgrades, such as the evolution
of the HotSpot garbage collector in Java 5 and Java
6 (as well as the prospect of even better performance
with the integration of the JRockit garbage collector
in Java 7), warm-up times are currently severely high.
Mechanisms must be developed to control the warm-
up of the class-loader in order to achieve the best pos-
sible latencies.

The UGen classes are still handcrafted and the di-
rectory is not fully complete. Effort is currently in-
vested in synthetic generation of these classes from a
UGen descriptor database, an approach already taken
by JCollider, scruby, rsc3, hsc3, and Overtone. In
this process, we will try to enrich the types to create
even stronger compile-time restrictions, such as the
required calculation-rates of UGen input arguments.
We also think that the possibility of algorithmic trans-
formations of UGen graphs could become more valu-
able if the multi-channel-expansion was performed at
a later stage in the building process.

Finally, an integration with two systems offers in-
teresting possibilities: Android and Processing. The
port of the SuperCollider server to the Android mobile
platform is currently underway, and Scala itself runs
nicely on Android. The Processing graphics program-
ming framework has recently been ported to Scala
[22], so bringing sound and visuals together will be-
come even easier. We have conducted small proofs-of-
concept that show that ScalaCollider in fact runs on
Android and combines well with Processing.
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